Genetic Algorithms for a Parameter Estimation of a Fermentation Process Model: A Comparison
نویسندگان
چکیده
In this paper the problem of a parameter estimation using genetic algorithms is examined. A case study considering the estimation of 6 parameters of a nonlinear dynamic model of E. coli fermentation is presented as a test problem. The parameter estimation problem is stated as a nonlinear programming problem subject to nonlinear differentialalgebraic constraints. This problem is known to be frequently ill-conditioned and multimodal. Thus, traditional (gradient-based) local optimization methods fail to arrive satisfied solutions. To overcome their limitations, the use of different genetic algorithms as stochastic global optimization methods is explored. These algorithms are proved to be very suitable for the optimization of highly non-linear problems with many variables. Genetic algorithms can guarantee global optimality and robustness. These facts make them advantageous in use for parameter identification of fermentation models. A comparison between simple, modified and multi-population genetic algorithms is presented. The best result is obtained using the modified genetic algorithm. The considered algorithms converged very closely to the cost value but the modified algorithm is in times faster than other two.
منابع مشابه
A Combinatorial Algorithm for Fuzzy Parameter Estimation with Application to Uncertain Measurements
This paper presents a new method for regression model prediction in an uncertain environment. In practical engineering problems, in order to develop regression or ANN model for making predictions, the average of set of repeated observed values are introduced to the model as an input variable. Therefore, the estimated response of the process is also the average of a set of output values where th...
متن کاملSECURING INTERPRETABILITY OF FUZZY MODELS FOR MODELING NONLINEAR MIMO SYSTEMS USING A HYBRID OF EVOLUTIONARY ALGORITHMS
In this study, a Multi-Objective Genetic Algorithm (MOGA) is utilized to extract interpretable and compact fuzzy rule bases for modeling nonlinear Multi-input Multi-output (MIMO) systems. In the process of non- linear system identi cation, structure selection, parameter estimation, model performance and model validation are important objectives. Furthermore, se- curing low-level and high-level ...
متن کاملA New Optimized Hybrid Model Based On COCOMO to Increase the Accuracy of Software Cost Estimation
The literature review shows software development projects often neither meet time deadlines, nor run within the allocated budgets. One common reason can be the inaccurate cost estimation process, although several approaches have been proposed in this field. Recent research studies suggest that in order to increase the accuracy of this process, estimation models have to be revised. The Construct...
متن کاملPSO-based Parameter Estimation of Nonlinear Kinetic Models for b-Mannanase Fermentation
Particle swarm optimization (PSO), as a novel evolutionary algorithm involved in social interaction for global space search, was firstly used in kinetic parameter estimation. Based on three developed nonlinear kinetic equations for bacterial cell growth, total sugar utilization and -mannanase production by Bacillus licheniformis under the support of a batch fermentation process, various PSO alg...
متن کاملEstimation and Calibration of Robot Link Parameters with Intelligent Techniques
Abstract: Using robot manipulators for high accuracy applications require precise value of the kinematics parameters. Since measurement of kinematics parameters are usually associated with errors and accurate measurement of them is an expensive task, automatic calibration of robot link parameters makes the task of kinematics parameters determination much easier. In this paper a simple and easy ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005